Uniform stability estimates for the discrete Calderon problems
نویسندگان
چکیده
In this article, we focus on the analysis of discrete versions of the Calderón problem in dimension d ≥ 3. In particular, our goal is to obtain stability estimates for the discrete Calderón problems that hold uniformly with respect to the discretization parameter. Our approach mimics the one in the continuous setting. Namely, we shall prove discrete Carleman estimates for the discrete Laplace operator. A main difference with the continuous ones is that there, the Carleman parameters cannot be taken arbitrarily large, but should be smaller than some frequency scale depending on the mesh size. Following the by-now classical Complex Geometric Optics (CGO) approach, we can thus derive discrete CGO solutions, but with limited range of parameters. As in the continuous case, we then use these solutions to obtain uniform stability estimates for the discrete Calderón problems.
منابع مشابه
On stability estimates in the Gel’fand-Calderon inverse problem
We prove new global stability estimates for the Gel'fand-Calderon inverse problem in 3D.
متن کاملStability of Discrete Stokes Operators in Fractional Sobolev Spaces
Using a general approximation setting having the generic properties of finite-elements, we prove uniform boundedness and stability estimates on the discrete Stokes operator in Sobolev spaces with fractional exponents. As an application, we construct approximations for the timedependent Stokes equations with a source term in L(0, T ;L(Ω)) and prove uniform estimates on the time derivative and di...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملExponential stability of time-varying linear systems
This paper considers the stability of both continuous and discrete time-varying linear systems. Stability estimates are obtained in either case in terms of the Lipschitz constant for the governing matrices and the assumed uniform decay rate of the corresponding frozen time linear systems. The main techniques used in the analysis are comparison methods, scaling and the application of continuous ...
متن کامل